LABORATORY MANUAL FOR ENGINEERING CHEMISTRY RY

PREPARED AND DEVELOPED BY

Smt. SULAGNA DAS

Govt. Polytechnic, Sonepur

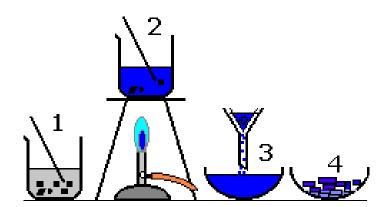
Table of Contents

Experiment	Page No.
EXPERIMENT No1 : Preparation and Crystallization of Copper sulphate from Copper carbonate	2
EXPERIMENT No2 : Preparation of Carbon dioxide gas in Laboratory and study its physical & chemical properties	4
EXPERIMENT No3: Volumetric analysis (TITRATION)-Acidimetry-Determination of the strength of an acid solution by using a standard alkali solution.	7
EXPERIMENT No4: Volumetric analysis (TITRATION)-Alkalimetry-Determination of the strength of an alkali solution by using a standard acid solution.	10
EXPERIMENT No5: Preparation of Ammonia gas in Laboratory and study its physical & chemical properties	13
EXPERIMENT No6 : SALT ANALYSIS-Test for Known Acid radicals in the given salts	16
EXPERIMENT No7: SALT ANALYSIS-Test for Known Basic radicals in the given salts	20
EXPERIMENT No8: SALT ANALYSIS-Test for unknown acid and Basic radicals in a given salt.	24

By S. Das, G.P. Sonepur Page - 1 -

EXPERIMENT No.-1: Preparation and Crystallization of Copper sulphate from Copper carbonate

Aim of the Experiment:


To prepare the crystals of Copper sulphate from Copper carbonate.

Apparatus Required:

- 1. Beaker
- 2. Glass rod
- 3. Tripod stand
- 4. Wire gauze
- 5. Bunsen Burner
- 6. Funnel
- 7. Filter Stand
- 8. Filter paper
- 9. Porcelain Basin

Chemicals Required:

- 1. Copper Carbonate
- 2. Dilute Sulphuric acid

Theory:

Copper carbonate when react with dilute sulphuric acid is converted into copper sulphate. The resulting copper sulphate solution is evaporated till the crystallization point is reached. On cooling the resulting solution, the crystals of copper sulphate separates out.

Chemical Equation:

$$CuCO_3 + H_2SO_4 \longrightarrow CuSO_4 + H_2O + CO_2$$

Procedure:

- 1. Take about 50-60ml of dil. H₂SO₄ solution in a beaker and add the supplied CuCO₃ salt pinch by pinch with stirring till a small quantity of CuCO₃ solid is left behind.
- 2. Heat the resulting solution to boil in the beaker for 2-3 minutes while stirring by glass rod to drive out CO_2 gas liberated in the process.
- 3. Then cool the solution slightly and filter into a china dish.
- 4. Then add a few drops of dil. H₂SO₄ to the filtrate to check the hydrolysis of salt.
- 5. Concentrate the filtrate in the basin by evaporation through heating with constant stirring till a drop of solution forms a crystal on the glass rod when it was cooled by blowing air from the mouth.
- 6. Remove the china dish from the flame and cool inside the water bath till the blue crystals of CuSO₄ separate out.

By S. Das, G.P. Sonepur Page - 2 -

7. Then separate the mother liquor from the crystals and dry by gently pressing between the pads of filter papers.

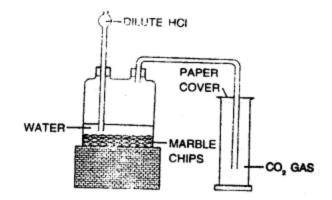
Result:

Colour of crystal: Blue Shape of the crystal- Triclinic

By S. Das, G.P. Sonepur Page - 3 -

EXPERIMENT No.-2: Preparation of Carbon dioxide gas in Laboratory and study its physical & chemical properties

Aim of the experiment:


To Prepare of Carbon dioxide gas in Laboratory and study its physical & chemical properties.

Apparatus Required:

- 1. Woulf's Bottle
- 2. Thistle funnel
- 3. Delivery tube
- 4. Rubber cork
- 5. Gas Jar

Chemicals Required:

- 1. Marble Chips(CaCO₃)
- 2. Dilute HCl
- 3. Litmus Paper
- 4. Lime water
- 5. NaOH solution
- 6. Phenolphthalein solution

Theory:

In the laboratory, CO₂ gas is prepared by the action of dilute HCl upon marble chips(CaCO₃)in a Woulf's bottle.

Chemical Equation:

$$CaCO_{3(s)} + 2HCl_{(aq)} \longrightarrow CaCl_2 + H_2O + CO_2$$
 marble chips

Procedure:

- 1. Fit a Woulf's bottle with rubber cork, thistle funnel and delivery tube in air tight condition.
- 2. Introduce a few small size marble chips(CaCO₃) into the Woulf's bottle by opening one of its mouth.
- 3. Then pour a little amount of water into the Woulf's bottle through the thistle funnel so as to cover the marble chips(CaCO₃). Insert the thistle funnel more into the Woulf's bottle such that its extreme end remains inside the water.
- 4. Then add a little quantity of the dil. HCl through the thistle funnel and collect the CO₂ gas is in the gas jar by upward displacement of air.
- 5. Test the collected gas in the gas jar by showing a burning matchstick at the mouth of the gas jar.
- 6. Study different physical and chemical properties of CO₂ gas.

By S. Das, G.P. Sonepur Page - 4 -

Observations:

Physical Properties:

EXPERIMENT	OBSERVATION	INFERENCE
1. Observe the colour of	1. Colourless	1. CO ₂ is a Colourless gas
the gas.		
2. Observe the odour of	2. Odourless	2. CO ₂ is a Odourless gas
the gas.		
3. Show a glowing splinter/	3. The match stick will	3. CO ₂ gas neither combustible
burning matchstick into	extinguish.	nor supporter of combustion.
a test tube full of CO ₂		
gas.		
4. Collect the gas in a test	4.The level of water inside the	4. CO ₂ gas is highly soluble in
tube half filled with	test tube is found to be	water.
water & shake	increased.	
vigorously by putting		
the thumb at its mouth.		
Then remove the thumb		
and observe the		
level/volume of water		
inside the test tube.		

Chemical Properties:

EXPERIMENT	OBSERVATION	INFERENCE
1. Show a piece of moist	1. The blue litmus change	1. CO ₂ gas is acidic in nature.
blue litmus paper to the	to red.	
gas.		
2. Pass the gas through	2. Lime water turns milky.	2. CO ₂ gas is present which
lime water solution.		produces CaCO₃ solution with
		lime water.
Ca(OI	$H_{12} + CO_2 \longrightarrow CaCO_3 + H_2$ milky white pp	
3. Continue to pass the gas	3. Milkiness disappear on	3. Excess CO ₂ gas produces a
through lime water	excess passing of gas and	soluble salt of Calcium
solution in excess. Then	reappears on boiling.	bicarbonate and reappears on
boil the solution.		gently heating due to formation
		of CaCO₃ again.

By S. Das, G.P. Sonepur Page - 5 -

$CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$ Soluble		
$Ca(HCO_3)_2 \xrightarrow{\Delta} CaCO_3 + H_2O + CO_2$ Soluble		
4. Pass the gas through 2-3	4. The solution turns pink to	4. CO ₂ gas is acidic in nature.
ml of very dilute	colourless.	
solution of NaOH		
containing one drop of		
phenolphthalein		
indicator solution.		

By S. Das, G.P. Sonepur Page - 6 -

EXPERIMENT No.-3: Volumetric analysis(TITRATION)-Acidimetry-Determination of the strength of an acid solution by using a standard alkali solution.

Aim of the experiment:

To find out the strength of the supplied acid solution by using a standard alkali solution in the laboratory.

Apparatus Required:

- 1. Burette-50ml
- 2. Pipette-10ml
- 3. Conical Flask
- 4. Beaker
- 5. Wash bottle
- 6. Burette stand with clamp
- 7. Dropper

Chemicals Required:

- 1. Unknown strength of acid solution
- 2. A standard base solution
- 3. Phenolphthalein indicator solution

Theory:

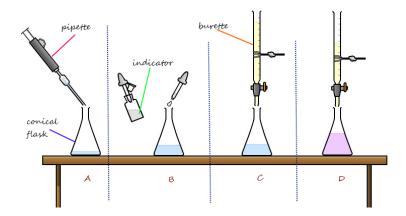
The strength of an unknown acid or basic solution can be calculated by using the Normality Equation:

$$N_1.V_1 = N_2.V_2$$

Where; N_1 = Strength of acid(unknown)

 V_1 = Volume of used acid(Burette reading)

N₂ = Strength of standard base(known)


 V_2 = Volume of the alkali(pipette reading)

Procedure:

- 1. Wash the burette, pipette and conical flask with tap water and then rinse with distilled water.
- 2. Then rinse the burette thrice with a few ml. of the given acid solution and reject the washings. Then fill the burette with the given acid solution to a convenient level without air bubbles and clamp to the burette stand in a vertical position.
- 3. Next, rinse the pipette with the supplied alkali/base solution thrice and the washings are reacted.

By S. Das, G.P. Sonepur Page - 7 -

4. Then, pipette 10ml of the supplied alkali into the conical flask. After transferring the alkali solution, touch the tip of the pipette to the inner side of the conical flask thrice. Wash the sides of the conical flask with a little distilled water.

- 5. Now, add one drop of phenolphthalein indicator to the solution. The solution turns pink in the flask.
- 6. Then keep the conical flask under the burette.
- 7. Note the initial burette reading avoiding parallax error.
- 8. Now, run down the acid from the burette slowly into the conical flask and shake the flask well. Continue the slow addition of the acid solution till the solution in the conical flask
 - becomes colourless. Now, stop the addition of acid and note the final burette reading.
- 9. Note down the difference between final burette reading and initial burette reading. This gives the volume of acid consumed.
- 10. Repeat the titration process till three concordant readings are obtained.

Tabulation:

No. of	Volume of alkali (V ₂)	Burette F	Reading	Difference	Volumes of acid
observ	(In ml)	LDD	E D D	F.B.R-I.B.R	consumed (V ₁)
-ations		I.B.R	F.B.R		(In ml)
1					
2					
3					
4					

By S. Das, G.P. Sonepur Page - 8 -

Calculation:

We know that, from Normality equation;

$$N_1.V_1 = N_2.V_2$$

Where;

 N_1 = Strength of acid(unknown)

 V_1 = Volume of used acid(Burette reading)-Avg. value from calculation table

N₂ = Strength of standard base(given)

 V_2 = Volume of the alkali(pipette reading) = 10ml

$$N1 = \frac{N2.\,V2}{N1}$$

Conclusion:

From the above experiment, we conclude that; the normality of acid is ______

EXPERIMENT No.-4: Volumetric analysis(TITRATION)-Alkalimetry-Determination of the strength of an alkali solution by using a standard acid solution.

Aim of the experiment:

To find out the strength of the supplied alkali solution by using a standard acid solution in the laboratory.

Apparatus Required:

- 1. Burette-50ml
- 2. Pipette-10ml
- 3. Conical Flask
- 4. Beaker
- 5. Wash bottle
- 6. Burette stand with clamp
- 7. Dropper

Chemicals Required:

- 1. Unknown strength of alkali solution
- 2. A standard acid solution
- 3. Phenolphthalein indicator solution

Theory:

The strength of an unknown acid or basic solution can be calculated by using the Normality Equation:

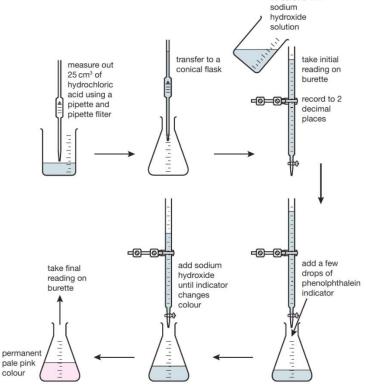
$$N_1.V_1 = N_2.V_2$$

Where; N_1 = Strength of alkali(unknown)

 V_1 = Volume of used alkali(Burette reading)

 N_2 = Strength of standard acid(known)

 V_2 = Volume of the acid(pipette reading)


Procedure:

- 1. Wash the burette, pipette and conical flask with tap water and then rinse with distilled water.
- 2. Then rinse the burette thrice with a few ml. of the given base solution and reject the washings. Then fill the burette with the given alkali solution to a convenient level without air bubbles and clamp to the burette stand in a vertical position.
- 3. Next, rinse the pipette with the supplied acid solution thrice and the washings are reacted.
- 4. Then, pipette 10ml of the supplied acid into the conical flask. After transferring the alkali solution, touch the tip of the pipette to the inner side of the conical flask thrice. Wash the sides of the conical flask with a little distilled water.

By S. Das, G.P. Sonepur Page - 10 -

5. Now, add one drop of phenolphthalein indicator to the solution. The solution remains colourless in the flask.

- Then keep the conical flask under the burette.
- 7. Note the initial burette reading avoiding parallax error.
- 8. Now, run down the alkali solution from the burette slowly into the conical flask and shake the flask well. Continue the slow addition of the acid solution till the solution in the conical flask turns pink. Now, stop the addition of alkali and note the final burette reading.
- Note down the difference between final burette reading and initial burette reading. This gives the volume of alkali consumed.
- 10. Repeat the titration process till three concordant readings are obtained.

Tabulation:

No. of	Volume of acid (V ₂)	Burette F	Reading	Difference	Volumes of alkali
observ -ations	(In ml)	I.B.R	F.B.R	F.B.R-I.B.R	consumed (V ₁) (In ml)
1					
2					
3					
4					

Calculation:

We know that, from Normality equation;

$$N_1.V_1 = N_2.V_2$$

By S. Das, G.P. Sonepur Page - 11 -

Where;

N₁ = Strength of alkali(unknown)

 V_1 = Volume of used alkali(Burette reading)-Avg. value from calculation table

N₂ = Strength of standard acid(given)

 V_2 = Volume of the acid(pipette reading) = 10ml

$$N1 = \frac{N2.\,V2}{N1}$$

Conclusion:

From the above experiment, we conclude that; the normality of given alkali is _____

EXPERIMENT No.-5: Preparation of Ammonia gas in Laboratory and study its physical & chemical properties

Aim of the experiment:

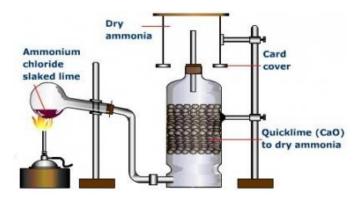
To Prepare of ammonia gas in Laboratory and study its physical & chemical properties.

Apparatus required:

- 1. Round bottom flask
- 2. Delivery tube
- 3. Gas jar
- 4. Clamp stand
- 5. Cork
- 6. Test tube

Chemicals required:

- 1. Solid ammonium chloride(NH₄Cl)
- 2. Quick Lime(CaO)


Theory:

Ammonia gas is prepared in the laboratory by heating an intimate mixture of solid NH₄Cl and powdered quick lime (CaO) or dry slaked lime Ca(OH)₂ in the ratio 1:3 the gas is collected by downward displacement of air as it is lighter than air.

Chemical reaction:

Procedure:

- Take a mixture of ammonium chloride and quick lime in 1:3 ratio in a mortar and then mix thoroughly and take this mixture in a round bottom flask.
- 2. Fit the cork along with the delivery tube into the mouth of the round bottom flask.
- 3. Clamp the RB flask in the clamp stand and heat it continuously.
- 4. Collect the gas by downward displacement of air.
- 5. Study its physical & chemical properties.

By S. Das, G.P. Sonepur Page - 13 -

* Better results can be obtained by passing the gas through a CaO tube to dry ammonia.

Observation:

Physical properties:

EXPERIMENT	OBSERVATION	INFERENCE
1. Observe the colour of	1. Colourless	1. NH₃ is a Colourless gas
the gas.		
2. Observe the odour of	2. Pungent suffocating odour	2. NH ₃ is a pungent suffocating
the gas.		gas.
3. Introduce a burning	3. The match stick will	3. NH ₃ gas neither combustible
matchstick into a test	extinguish.	nor supporter of combustion.
tube full of NH₃ gas.		
4. Invert the gas jar	4. The level of water is found to	4. NH ₃ gas is highly soluble in
containing NH₃ gas into	be increased.	water.
a trough of water.		

Chemical properties:

EXPERIMENT		OBSERVATION	INFERENCE
1.	Show a piece of moist	1. The red litmus change to	1. NH₃ gas is basic in nature.
	red litmus paper to the	blue.	
	gas.		
2.	Show a glass rod dipped	2. White dense fumes are	2. White dense fumes are
	in concentrated HCl to	observed.	observed due to formation of
	the gas.		NH ₄ Cl.
	N	$H_3 + HCl \longrightarrow NH_4Cl$	
		White fum	es
3.	Pass the gas through	3. The colour of the solution	3. The reddish brown colour is
	about 2cc of Nessler's	changes to reddish brown.	due to a complex.
	reagent in a clean dry		
	test tube.		
		NH	
		Hg	
	$NH_3 + 2K_2[HgI_4] + 3KOH \longrightarrow O + 7KI + 2H_2O$		
Nessler's Hg			-
Reagent			
		Iodide of mil	llion's base
		Reddish brov	vn ppt.

By S. Das, G.P. Sonepur Page - 14 -

4. Pass the gas through 2cc	4. The colour of the solution	4. The reddish brown colour is
of ferric chloride	changes to reddish brown.	due to formation of Fe(OH) ₃
solution.		precipitated.
$FeCl_3 + 3NI$	$H_3 + 3H_2O \longrightarrow Fe(OH)_3$	+ 3NH ₄ Cl
	Reddish brown ppt.	
5. First slowly pass the gas	5. First, the colour changes to	5. NH₃ gas is confirmed.
through 2cc of aqueous	bluish white and on excess the	
copper sulphate solution in	colour changes to dark blue.	
a clean dry test tube and		
then in excess.		
$CuSO_4 + NH_3 + 2H_2O$	$O \longrightarrow Cu(OH)_2 \downarrow \stackrel{NH_3}{\longrightarrow}$	$ ightharpoonup$ [Cu(NH ₃) ₄](OH) ₂ \downarrow
	Bluish white gelatinousppt.	Deep Blue ppt.

By S. Das, G.P. Sonepur Page - 15 -

EXPERIMENT No.-6: SALT ANALYSIS-Test for Known Acid radicals in the given salts

AIM OF THE EXPERIMENT:

To detect known acid radicals in a given salt.

WORKING PROCEDURE FOR INDIVIDUAL ACID RADICALS:

a) TEST FOR CARBONATE(CO_3^2):

EXPERIMENT	OBSERVATION	INFEERENCE
 i) Test with dilute HCL: Take 1 ml of dilute HCl in a clean dry test tube and heat it upto boiling. Then remove it from boiling and add a pinch of salt to it. 	Effervescence takes place with evolution of colourless and odourless gas.	CO ₂ gas comes out of carbonate salt.
Na ₂ CO ₃ +	C ₂ O + CO ₂ ↑	
ii) Pass the gas through limewater in small quantity and then in excess.	Limewater turns milky. Milkiness disappears with excess gas.	CO ₃ ²⁻ is confirmed.
$Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 \lor + H_2O$ $CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$ Soluble		

b) TEST FOR SULPHIDE(S²⁻):

EXPERIMENT	OBSERVATION	INFEERENCE
i) Test with dilute HCL: Take 1 ml of dilute HCl in a clean dry test tube and heat it upto boiling. Then remove it from boiling and add a pinch of salt to it.	Effervescence takes place with evolution of colourless gas with rotten egg smell.	H₂S gas comes out of sulphide salt.
$Na_2S + 2HCl \longrightarrow 2NaCl + H_2S$		

By S. Das, G.P. Sonepur Page - 16 -

ii) Pass the gas through the filter paper dipped in lead acetate solution.	The filter paper turns black	Lead sulphide is formed. S ²⁻ is confirmed.
(CH ₃ COO) ₂ F	$Pb + H_2S \longrightarrow 2CH_3COOI$	H + PbS ♥ Black ppt.

c) TEST FOR CHLORIDE(CI⁻):

EXPERIMENT	OBSERVATION	INFEERENCE		
i) Test with conc. H ₂ SO ₄ : Take a pinch of given salt in a clean dry test tube and add 1 to 2 ml of conc. H ₂ SO ₄ to it.	Effervescence takes place with the evolution of a colourless fuming gas with pungent smell	HCl gas comes out of chloride salt.		
	$H + H_2SO_4 \longrightarrow Na_2SO_4 + H_2SO_4 \longrightarrow BaSO_4 + 2$			
ii) Show a glass rod dipped in conc. NH ₄ OH to the mouth of the test tube containing salt and conc. H ₂ SO ₄	Dense white fumes are evolved	Volatile NH₄Cl is formed		
$NH_4OH + HC1 \longrightarrow NH_4C1 + H_2O$ dense white fumes				
iii) Action of AgNO ₃ : Take 1 to 2ml of salt solution with distilled water in a clean test tube & acidify it with dilute HNO ₃ acid & add a few ml of AgNO ₃ solution	A curdy white precipitate is formed	The precipitate is due to formation of AgCI.		
$NaCl + AgNO_3 \longrightarrow AgCl + NaNO_3$				

By S. Das, G.P. Sonepur Page - 17 -

To the above solution add NH ₄ OH solution.	The precipitate dissolves and reappears on addition of dilute HCl	The precipitate dissolves in dil. NH4OH due to formation of complex.
AgCl + 2NH ₄ 0	2H ₂ O	
[Ag(NH3)2]Cl	+ HNO ₃ \longrightarrow AgCl ψ + NF ppt. reappear	H ₄ NO ₃ + H ₂ O ars

d) TEST FOR NITRATE(NO₃-):

EXPERIMENT	OBSERVATION	INFEERENCE
i) Test with conc. H ₂ SO ₄ : Take a pinch of given salt in a clean dry test tube and add 1 to 2 ml of conc. H ₂ SO ₄ to it and warm gently	Effervescence takes place with the evolution of light brown fumes	Vapours of HNO₃ comes out from a nitrate salt.
2NaNO ₃ +	$H_2SO_4 \longrightarrow Na_2SO_4 + 2H$	NO ₃
ii) Test with Cu-turnings: To the above mixture add a few copper turnings and warm gently.	Evolution of copius brown fumes	NO ₂ gas is formed from a nitrate salt.
Cu + 4HN	$O_3 \longrightarrow Cu(NO_3)_2 + 2H_2C$	0 + 2NO ₂ 1
iii) Brown Ring Test: Take 1 to 2 cc of salt solution in a cleandry test tube and add equal volume of conc. H ₂ SO ₄ to it. Cool it under tap water and add freshly prepared FeSO ₄ solution through the side of the tube slowly.	A brown ring is formed at the junction of 2 liquid layers.	Brown ring is formed due to formation of nitroso ferrous sulphate.

By S. Das, G.P. Sonepur Page - 18 -

$$KNO_3 + H_2SO_4 \longrightarrow KHSO_4 + HNO_3$$
 $6FeSO_4 + 2HNO_3 + 3H_2SO_4 \longrightarrow 3Fe_2(SO_4)_3 + 2NO + 4H_2O$
 $FeSO_4 + NO \longrightarrow [Fe(NO)]SO_4$
Nitroso ferrous sulphate
Brown ring

e) TEST FOR SULPHATE(SO₄²⁻):

EXPERIMENT	OBSERVATION	INFEERENCE		
Take a little of the given salt in a clean and dry test tube and add a few cc of distilled water and shake well. Acidify it with dil. HCl. Then add barium chloride solution to it	A white precipitate is obtained which is insoluble in conc. HCl even on boiling	Barium sulphate is formed which is insoluble in conc. HCl		
$Na_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2NaCl$ white ppt.				

By S. Das, G.P. Sonepur Page - 19 -

EXPERIMENT No.-7: SALT ANALYSIS-Test for Known Basic radicals in the given salts

AIM OF THE EXPERIMENT:

To detect known basic radicals in a given salt.

WORKING PROCEDURE FOR INDIVIDUAL ACID RADICALS:

a) TEST FOR Al⁺³:

EXPERIMENT	OBSERVATION	INFEERENCE		
i) Take about 2ml of the supplied salt solution. Add solid NH ₄ Cl till saturation. Then add dil. NH ₄ OH solution first drop wise & then in excess till alkaline.	Gelatinous white precipitate is obtained.	Al ⁺³ may be present.		
AlCl ₃ + 3NH ₄ OH → Al(OH) ₃ V + 3NH ₄ Cl Gelatinous white ppt.				
ii) Take about 2ml of the supplied salt solution. Add dil. NaOH drop by drop to it.	Gelatinous white precipitate is first obtained which is soluble in excess NaOH	Al ⁺³ is confirmed		
$AlCl_3 + 3NaOH \longrightarrow Al(OH)_3 + 3NaCl$				
With excess NaOH solution:				
Al(OH) ₃ + NaOH NaAlO ₂ + 2H ₂ O Sodium meta-aluminate				

b) TEST FOR Zn⁺²:

EXPERIMENT		OBSERVATION	ON	INFEERENCE
i) Add solid NH ₄ Cl followed by dil. NH ₄ OH to the salt solution. Warm it & pass H ₂ S gas through it.	obtaine	precipitate d.	is	Zn ⁺² may be present

By S. Das, G.P. Sonepur Page - 20 -

$ZnCl_2 + H_2S \longrightarrow ZnS + 2HCl$					
ii) Add dilute NaOH to the solution drop wise & then in excess. white precipitate is first obtained which is soluble in excess NaOH					
$ZnCl_2 + 2NaOH \longrightarrow Zn(OH)_2 + 2NaCl$ $Zn(OH)_2 + 2NaOH \longrightarrow Na_2ZnO_2 + 2H_2O$ Sodium Zincate Water soluble					

c) TEST FOR Ca⁺²:

EXPERIMENT	OBSERVATION	INFEERENCE			
i) Take about 2ml of the supplied salt solution. Add solid NH ₄ Cl till saturation. Then add dilute NaOH till alkaline. Add saturated solution of ammonium carbonate.	White precipitate is obtained.	Ca ⁺² may be present			
CaCl ₂ + (N	$CaCl_2 + (NH)_4CO_3 \longrightarrow CaCO_3 + 2NH_4Cl$				
ii) The white ppt. obtained is dissolved in dil. CH₃COOH. Add ammonium oxalate solution to it followed by dil. NH₄OH	White precipitate of calcium oxalate is obtained.	Ca ⁺² is confirmed			
$CaCO3 + 2CH3COOH \longrightarrow (CH3COO)2Ca + H2O + CO2$ $(CH3COO)2Ca + (NH4)2C2O4 \longrightarrow CaC2O4 + 2CH3COONH4$					

d) TEST FOR Na⁺:

EXPERIMENT	OBSERVATION	INFEERENCE
Add 1ml of potas pyroantimonate solution to 1 the salt solution	' '	Na ⁺ is confirmed

By S. Das, G.P. Sonepur Page - 21 -

$$2\text{NaCl} + \text{K}_2\text{H}_2\text{Sb}_2\text{O}_7 \longrightarrow \text{Na}_2\text{H}_2\text{Sb}_2\text{O}_7 \checkmark + 2\text{KCl}$$

e) TEST FOR K⁺:

EXPERIMENT	C	DBSERVATION		INFEERENCE
Add a few drops of cobalt nitrate	Yellow	precipitate	of	K⁺ is confirmed
solution followed by sodium nitrite	potassium	cobalti nitrite	if	
and dilute CH₃COOH to 1 ml of salt	formed			
solution. Allow it to stand for 5 min.				
$KCl + NaNO_2 \longrightarrow KNO_2 + NaCl$				
$Co(NO_3)_2 + 2NaNO_2 \longrightarrow Co(NO_2)_2 + 2NaNO_3$				
$2CH_3COOH + Co(NO_2)_2 + 2KNO_2 \longrightarrow 2CH_3COOK + H_2O + NO + Co(NO_2)_3$				
3KNO ₂ + Co	$(NO_2)_3$	► K ₃ [Co(NO ₂) ₆ Potassium co yellow ppt		i nitrate

f) TEST FOR NH₄⁺:

EXPERIMENT	OBSERVATION	INFEERENCE
a) Add dilute NaOH to 1cc of original salt solution and boil it	Brown precipitate is obtained.	NH ₄ ⁺ is confirmed
NH ₄ Cl +	NaOH \longrightarrow NH ₃ + NaCl	$+ H_2O$
b) Add Nessler's reagent to 1cc original salt solution	Reddish brown precipitate is obtained.	NH ₄ ⁺ is confirmed

By S. Das, G.P. Sonepur Page - 22 -

g) TEST FOR Mg⁺²:

EXPERIMENT	OBSERVATION	INFEERENCE
a) To 1 ml of salt solution add solid NH ₄ Cl till saturation & dil. NH ₄ OH till alkaline. Then add disodium hydrogen phosphate solution to it.	White precipitate is obtained.	Mg ⁺² is confirmed.
$MgSO_4 + NH_4OH + N$	$Na_2HPO_4 \longrightarrow Mg(NH_4)P$	$PO_4 + H_2O + Na_2SO_4$
b) To 1 ml of salt solution, add dil. HCl with a few drops of magneson reagent followed by addition of excess dil. NaOH	A blue precipitate is obtained.	Mg ⁺² is confirmed.

By S. Das, G.P. Sonepur Page - 23 -

EXPERIMENT No.-8: SALT ANALYSIS-Test for unknown acid and Basic radicals in a given salt.

<u>Aim Of The Experiment:</u> To identify the acid and basic radicals in a given unknown salt.

Preliminary Test:

Salt No.-

Colour- white/yellow/blue/grey/colourless

Structure- Crystalline/amorphous

Odour- Ammoniacal/rotten egg/odourless

Solubility- In Cold $H_2O/Hot\ H_2O$

In cold dil HCl/hot dil HCl

Litmus Test:

EXPERIMENT	OBSERVATION	INFEERENCE
Prepare a salt solution in water. Then add a drop of solution to blue litmus paper and red litmus paper.	changed to red b) Red litmus paper changed	a) Salt is acidic in natureb) Salt is basic in nature
		c) Salt is neutral

Dry Test for Basic Radicals:

1. Dry Test tube Heating:

EXPERIMENT	OBSERVATION	INFEERENCE
Take a pinch of salt in a clean and dry test tube and heat in strongly.	formed.	i) Ammonium salt may be present ii) Crystalline salt
	•	iii) Some nitrate salt
	becomes yellow when hot and white when	iv) Zinc salt
	cold. v) The salt fuses(melts) on heating and solidifies on	v) Alkali or alkaline earth metal salt
	cooling. vi) The salt swells on	vi) Some aluminium salt
	heating. vii) No change observed	vii)Next test is to be performed.

By S. Das, G.P. Sonepur Page - 24 -

2. Sodalime Test:

EXPERIMENT	OBSERVATION	INFEERENCE
Take a pinch of the salt in a mortar and add equal volume	i. Ammonia gas is evolved	i. Ammonium salt may be present.
of soda lime to it & add few drops of distilled water to it. Then rub it with the help of a	ii. No change observed	ii. Next test is to be performed.
pestle.		

3. Charcoal cavity test:

EXPERIMENT	OBSERVATION	INFEERENCE
Take a little of the salt in a charcoal cavity and heat it in oxidizing flame strongly.	 i. The salt decrepitates. ii. The salt deflagrates. iii. The salt fuses and is absorbed by the charcoal cavity which reappears on cooling. iv. Gives white infusible incandescent residue. v. No change observed 	 i. Crystalline salt ii. Nitrate salt iii. Alkali or alkaline earth metal salts iv. Perform cobalt nitrate test v. Next test is to be performed.

4. Cobalt nitrate test:

EXPERIMENT	OBSERVATION	INFEERENCE
In the above Charcoal cavity, take a pinch of the salt and add 1-2 drops of cobalt nitrate to it. Then heat it in a oxidizing flame of the bunsen burner strongly with the help of a blow pipe.	i. Blue mass ii. Green mass iii. Grey mass iv. No change observed	i. Aluminium salt ii. Zinc salt iii. Calcium salt iv. Next test is to be performed.

By S. Das, G.P. Sonepur Page - 25 -

5. Flame Test:

EXPERIMENT	OBSERVA	ATION	INFEERENCE
Take a few cc of concentrated	Colour of the flame	Colour of the	
HCl in a watch glass. Clean a	through naked eye	flame through	
piece of nichrome wire with		double blue	
the help of sand paper. Dip		glass	Sodium
the nichrome wire in conc. HCl and show it to the	i. Persistent golden yellow	Colourless	
oxidizing flame of burner. Repeat it thrice. Then first dip	0.11		
the nicrome wire in conc. HCl	ii. Violet		Potassium
and allow it to touch the salt and show it to the outer layer of the non-luminous flame.		Red	
Observe the colour of the flame through the naked eye	iii. Brick red/orange red		Calcium
and then with double blue		Light green	
glass.	iv. Green flame with blue center		Copper

Dry Test for Acid Radicals:

1. Test for Gr-I acid Radicals (CO_3^{2-} and S^{2-}):

EXPERIMENT	OBSERVATION	INFEERENCE
Take a pinch of salt in a test tube with 2cc of dilute HCl and warm it.	Effervescence takes place with evolution of colourless and odourless gas or colourless gas with rotten egg smell.	 CO₃² or S²⁻ may be present. Confirmatory tests are to be performed.
	2. No change is observed	Next test is to be performed.

By S. Das, G.P. Sonepur Page - 26 -

3. Test for Gr-II acid Radicals (Cl⁻ and NO₃-):

EXPERIMENT	OBSERVATION	INFEERENCE
To a pinch of salt, add 3 to 4 drops of conc. H ₂ SO ₄ in a clean and dry test tube.	A colourless fuming gas with pungent smell is evolved.	CI [—] may be present. Confirmatory test for chloride is to be performed
	2. Brown fumes with pungent smell are evolved.	2. NO ₃ may be present. Confirmatory test for chloride is to be performed
	3. No change is observed	3. Next test is to be performed.

4. Test for Gr-III acid Radicals(SO₄²⁻⁻):

EXPERIMENT	OBSERVATION	INFEERENCE
Take a little of the given salt in a clean and dry test tube and add a few cc of distilled water and shake well. Acidify it with dil. HCl. Then add barium chloride solution to it.	obtained which is insoluble in conc. HCl even on boiling	Barium sulphate is formed which is insoluble in conc. HCl. Sulphate is confirmed.

Wet test for acid radicals:

1. Test for Carbonate

EXPERIMENT	OBSERVATION	INFEERENCE
Pass the gas through limewater in small quantity and then in excess.	Limewater turns milky. Milkiness disappears with excess gas.	CO ₃ ²⁻ is confirmed.

2. Test for Sulphide

EXPERIMENT	OBSERVATION	INFEERENCE
Pass the gas through the filter paper dipped in lead acetate solution.		Lead sulphide is formed. S ²⁻ is confirmed.

By S. Das, G.P. Sonepur Page - 27 -

3. Test for Chloride

EXPERIMENT	OBSERVATION	INFEERENCE
i) Show a glass rod dipped in conc. NH ₄ OH to the mouth of the test tube containing salt and conc. H ₂ SO ₄	Dense white fumes are evolved	Volatile NH₄Cl is formed.
ii) Action of AgNO ₃ : Take 1 to 2ml of salt solution with distilled water in a clean test tube & acidify it with dilute HNO ₃ acid & add a few ml of AgNO ₃ solution	A curdy white precipitate is formed	The precipitate is due to formation of AgCl.
iii) To the above solution add NH₄OH solution.	The precipitate dissolves and reappears on addition of dilute HCl	The precipitate dissolves in dil. NH ₄ OH due to formation of complex. Cl ⁻ is confirmed.

4. Test for Nitrate

EXPERIMENT	OBSERVATION	INFEERENCE
i) Test with Cu-turnings: To the above mixture add a few copper turnings and warm gently.	Evolution of copius brown fumes	NO ₂ gas is formed from a nitrate salt.
ii) Brown Ring Test: Take 1 to 2 cc of salt solution in a clean dry test tube and add equal volume of conc. H ₂ SO ₄ to it. Cool it under tap water and add freshly prepared FeSO ₄ solution through the side of the tube slowly.	A brown ring is formed at the junction of 2 liquid layers.	Brown ring is formed due to formation of nitroso ferrous sulphate. Nitrate is confirmed.

By S. Das, G.P. Sonepur Page - 28 -

Wet test For Basic Radicals:

Separation into groups:

Prepare a salt solution with dilute HCl and filter.					
Residue-	Filtrate-1:	ate-1: Warm the filtrate & then pass H₂S gas till complete precipitation and filter			
1	Residue-	Filtrate-2: Warm the filtrate slightly. Then saturate it by adding solid			
Gr-I radicals	2	NH ₄ Cl followed by dilute NH ₄ OH solution and then filter.			
rudicals	Gr-IIA and Gr- IIB	Residue-3 Gr-IIIA	Filtrate-3: Warm the filtrate slightly & then pass H ₂ Sgas till complete precipitation & then filter.		
	radicals			aturate the filtrate with (NH ₄) ₂ CO ₃ owed by solid NH ₄ Cl & NH ₄ OH and	
		ppt(AI+3) If no ppt. test for Filtrate-3	radicals white ppt(Zn+2) If no ppt. test for Filtrate-4	Residue-5 Gr-IV radicals white ppt (Ca+2) If no ppt. test for Filtrate-5 individually	Filtrate-5 : Use this filtrate for the individual confirmatory test of Gr-V radicals. (Mg ⁺² , K ⁺ , Na ⁺ ,NH ₄ ⁺)

Test for Gr-IIIA Radicals(Al+3):

EXPERIMENT	OBSERVATION	INFEERENCE
	Gelatinous white precipitate is first obtained which is soluble in excess NaOH	Al ⁺³ is confirmed

By S. Das, G.P. Sonepur Page - 29 -

Test for Gr-IIIB Radicals(Zn+2):

EXPERIMENT	OBSERVATION	INFEERENCE
	white precipitate is first obtained which is soluble in excess NaOH	Zn ⁺² is confirmed

Test for Gr-IV Radicals(Ca⁺²):

EXPERIMENT	OBSERVATION	INFEERENCE
The white ppt. obtained is dissolved in dil. CH ₃ COOH. Add ammonium oxalate solution to it followed by dil. NH ₄ OH	White precipitate of calcium oxalate is obtained.	Ca ⁺² is confirmed

Test for Gr-V Radicals(Na⁺, K⁺, Mg⁺, NH₄⁺):

EXPERIMENT	OBSERVATION	INFEERENCE
Test for Na ⁺ : Add 1ml of potassium pyroantimonate solution to 1ml of the salt solution Test for K ⁺ : Add a few drops of cobalt nitrate solution followed by sodium nitrite and dilute CH ₃ COOH to 1 ml of salt solution. Allow it to stand for 5 min.	White precipitate of sodium pyroantimonate is obtained. Yellow precipitate of potassium cobalti nitrite if formed	Na ⁺ is confirmed K ⁺ is confirmed
Test for NH ₄ +: i) Add dilute NaOH to 1cc of original salt solution and boil it ii) Add Nessler's reagent to 1cc original salt solution	Brown precipitate is obtained. Reddish Brown precipitate is obtained.	NH ₄ ⁺ is confirmed NH ₄ ⁺ is confirmed
1cc original salt solution		

By S. Das, G.P. Sonepur Page - 30 -

Test for Mg ⁺² : i)To 1 ml of salt solution add solid NH ₄ Cl till saturation & dil. NH ₄ OH till alkaline. Then	White precipitate is obtained.	Mg ⁺² is confirmed.
add disodium hydrogen phosphate solution to it. ii)To 1 ml of salt solution, add dil. HCl with a few drops of magneson reagent followed by addition of excess dil. NaOH	A blue precipitate is obtained.	Mg ⁺² is confirmed.

Conclusion:

The acid radical obtained:

The basic radical obtained:

So, the given salt is:

By S. Das, G.P. Sonepur Page - 31 -